Evolution Equations of Parabolic Type
نویسنده
چکیده
be linear and quasilinear evolution equations of parabolic type in a Banach space X respectively. By "parabolic type" we mean that A(t) and A(t,u) are all the infinitesimal generators of analytic linear semigroups on X we do not necessarily assume that the domains of the operators A(t) and A("t,u) are dense subspaces of X, so the semigroups generated by them may not be of class c0 J. The domains D(A(t))
منابع مشابه
A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملNumerical Approximation of Parabolic Stochastic Partial Differential Equations
The topic of the talk were the time approximation of quasi linear stochastic partial differential equations of parabolic type. The framework were in the setting of stochastic evolution equations. An error bounds for the implicit Euler scheme was given and the stability of the scheme were considered.
متن کاملConvergence and optimal control problems of nonlinear evolution equations governed by time-dependent operator
We study an abstract nonlinear evolution equation governed by time-dependent operator of subdi erential type in a real Hilbert space. In this paper we discuss the convergence of solutions to our evolution equations. Also, we investigate the optimal control problems of nonlinear evolution equations. Moreover, we apply our abstract results to a quasilinear parabolic PDE with a mixed boundary cond...
متن کامل